EXPERIMENT E6: COMMON BASE AMPLIFIER

Related course: KIE1007 (Electronic Circuit I)

OBJECTIVES:

To measure the input impedance, voltage gain, current gain and power gain of a common base amplifier circuit

EQUIPMENT:

Oscilloscope; function generator; DC power supply; breadboard; multimeter; wires/jumpers; BJT BC547 (1 unit), resistors: $10k\Omega$ (2), $6.8k\Omega$ (1), $1.2k\Omega$ (2), $1k\Omega$ (2), 330Ω (1); capacitor 10uF (3); variable resistor $1k\Omega$ (1)

INSTRUCTIONS:

- 1. Record all your results and observations in a log book / paper
- 2. Follow the demonstrator's instructions throughout the experiment

REFERENCE(S):

Refer to the main references of KIE1007

INTRODUCTION:

Parameter	Common Base	Common Emitter	Common Collector
Voltage gain, <i>V_{gain}</i>	High	High	< 1
Current gain, <i>I_{gain}</i>	< 1	High	High
Input resistance, <i>r</i> _{in}	Low (~Ω)	Moderate (~kΩ)	High (~kΩ)
Output resistance, <i>r</i> out	High (~MΩ)	Moderate (~kΩ)	Low (~Ω)

PROCEDURE:

- 1. Construct the circuit according to Figure 1 on a breadboard. Turn ON the DC power supply only and set the DC power supply to +15V (This is for DC level calculation and biasing). You should be able to obtain V_B , V_C and V_E approximately as shown in Figure 1. V_B , V_C and V_E are measured using a multimeter, where its black wire is connected to the ground. Adjusting R_1 at this step will not change V_B , V_C and V_E .
- 2. Turn ON the function generator and set to sinusoidal voltage with 1 kHz frequency. Adjust the amplitude of the function generator and variable resistor R_1 until the output voltage V_0 is 5.66 Vpp (or 2V rms). V_0 is measured across R_L using an oscilloscope (Vpp value) by connecting CH1 across R_L or using a multimeter (Vrms value).
- 3. Measure V_i rms from the circuit using a multimeter. V_i = _____ Vrms
- 4. Use the following voltage-divider formula to calculate the actual input voltage V_{i} .

$$V_i = V_i' \left(\frac{R_3}{R_2 + R_3}\right) = \underline{\qquad} Vrms$$

- 5. Calculate the voltage gain of the amplifier using the formula $A_v = V_0 / V_i =$ _______(V_0 was obtained from step 2 and V_i was obtained from step 4)
- 6. Turn OFF the function generator and DC power supply. Modify a certain part of your circuit in Figure 1 according to Figure 2 by removing the resistor R_3 and short the resistor R_2 with a jumper/wire. Then, add a 1000 Ω resistor (R_{10}) in series with C_3 , as shown in Figure 2. Turn ON the function generator and DC power supply. Adjust R_1 and function generator amplitude so that the output voltage V₀ across R_L is 5.66 Vpp (or 2V rms).
- 7. Remove the jumper/wire across R_2 and measure the output voltage $V_0 =$ _____ Vrms.
- Calculate the input voltage V_i required to obtain the output voltage V₀ you recorded in step 7 and by using the voltage gain you recorded in step 5.
 V_i = V₀ (step 7) divided by voltage gain (step 5) = Vrms
- Calculate the voltage drop across R₂, where it is the difference between the voltage recorded in step 4 and the voltage calculated in step 8.
 Voltage across R₂ = _____ Vrms
- 10. Calculate the input current I_i , where I_i is the voltage across resistor R_2 (step 9) divided by R_2 (330 Ω). I_i = _____ mA rms
- 11. Calculate the output current I_0 , where I_0 is the output voltage V_0 (step 7) divided by the load resistance $R_L(10k\Omega)$. $I_0 = _$ _____ mA rms
- 12. Calculate the current gain using the output current I_0 (step 11) divided by the input current I_i (step 10). Current gain $A_i = I_0 / I_i =$ _____.
- 13. Calculate the power gain using the current gain A_i (step 12) multiplied with the voltage gain A_v (step 5). Power gain $A_P = A_i \times A_v =$ _____.
- 14. Calculate the input impedance R_i using the input voltage V_i (step 8) divided by the input current I_i (step 10). $R_i = V_i / I_i =$ _____ Ω .

DISCUSSION:

- 1. What is the purpose of removing the resistor R_3 , short the resistor R_2 with a jumper/wire and then add a 1000 Ω resistor (R_{10}) in series with C_3 in step 6?
- 2. Describe the operation of the common base amplifier.
- 3. What is the importance of input and output resistance of a common base amplifier?
- 4. What is the importance of current gain and power gain of a common base amplifier?
- 5. State some applications of a common base amplifier.
- 6. What are the functions of the capacitors?

END OF EXPERIMENT

APPENDIX:

Component	Symbol	Figure
Variable resistor / potentiometer	The resistance is fixed between points a and c. The resistance can be changed between points a and b or points b and c.	a c
BJT BC547	B	C547B W 79